
2/22/24

1

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Dr. Mohamed Reda Bouadjenek

School of Information Technology, Faculty of
Sci Eng & Built Env

reda.bouadjenek@deakin.edu.au

SIT330-770: Natural Language
Processing

Week 3 - Text processing
Regular Expressions, Text Normalization, Edit Distance

1

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.1 - Regular Expressions

SIT330-770: Natural
Language Processing

2

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

2
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• A formal language for specifying text strings

• How can we search for any of these?

o woodchuck

o woodchucks

o Woodchuck

o Woodchucks

Regular expressions

3

3

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Letters inside square brackets []

• Ranges [A-Z]

Regular Expressions: Disjunctions

4

Pattern Matches
[wW]oodchuck Woodchuck,

woodchuck
[1234567890] Any digit

Pattern Matches
[A-Z] An upper case letter Drenched Blossoms

[a-z] A lower case letter my beans were impatient

[0-9] A single digit Chapter 1: Down the Rabbit Hole

4

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Negations [^Ss]
o Carat means negation only when first in []

Regular Expressions: Negation in Disjunction

5

Pattern Matches
[^A-Z] Not an upper case letter Oyfn pripetchik

[^Ss] Neither ‘S’ nor ‘s’ I have no exquisite reason”

[^e^] Neither e nor ^ Look here

a^b The pattern a carat b Look up a^b now

5
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Woodchuck is another name for groundhog!

• The pipe | for disjunction

Regular Expressions: More Disjunction

6

Pattern Matches
groundhog|woodchuck woodchuck

yours|mine yours

a|b|c = [abc]
[gG]roundhog|[Ww]oodchuck Woodchuck

6

mailto:reda.bouadjenek@deakin.edu.au

2/22/24

2

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Regular Expressions: ? *+.

7

Stephen C Kleene

Pattern Matches
colou?r Optional

previous char
color colour

oo*h! 0 or more of
previous char

oh! ooh! oooh! ooooh!

o+h! 1 or more of
previous char

oh! ooh! oooh! ooooh!

baa+ baa baaa baaaa baaaaa

beg.n begin begun begun beg3n Kleene *, Kleene +

7

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Regular Expressions: Anchors ^ $

8

Pattern Matches
^[A-Z] Palo Alto
^[^A-Za-z] 1 “Hello”
\.$ The end.
.$ The end? The end!

8
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Find me all instances of the word “the” in a text.

the

Misses capitalized examples

[tT]he

Incorrectly returns other or theology

[^a-zA-Z][tT]he[^a-zA-Z]

Example

9

9

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The process we just went through was based on fixing two kinds of errors:

1. Matching strings that we should not have matched (there, then, other)

False positives (Type I errors)

2. Not matching things that we should have matched (The)

False negatives (Type II errors)

Errors

10

10

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• In NLP we are always dealing with these kinds of errors.

• Reducing the error rate for an application often involves two antagonistic

efforts:
o Increasing accuracy or precision (minimizing false positives)

o Increasing coverage or recall (minimizing false negatives).

Errors cont.

11

11
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Regular expressions play a surprisingly large role
o Sophisticated sequences of regular expressions are often the first model for any text

processing

• For hard tasks, we use machine learning classifiers

o But regular expressions are still used for pre-processing, or as features in the classifiers

o Can be very useful in capturing generalizations

Summary

12

12

2/22/24

3

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.2- More Regular Expressions:
Substitutions and ELIZA

SIT330-770: Natural
Language Processing

13

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

13

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Substitution in Python and UNIX commands:

s/regexp1/pattern/

e.g.:

s/colour/color/

Substitutions

14

14
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Say we want to put angles around all numbers:
the 35 boxes à the <35> boxes

• Use parens () to "capture" a pattern into a numbered register (1, 2, 3…)

• Use \1 to refer to the contents of the register

s/([0-9]+)/<\1>/

Capture Groups

15

15

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• /the (.*)er they (.*), the \1er we \2/

• Matches

 the faster they ran, the faster we ran

• But not

 the faster they ran, the faster we ate

Capture groups: multiple registers

16

16

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Parentheses have a double function: grouping terms, and capturing

• Non-capturing groups: add a ?: after paren:

• E.g.: /(?:some|a few) (people|cats) like some \1/
o matches

osome cats like some cats

o but not

osome cats like some some

But suppose we don't want to capture?

17

17
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• (?= pattern) is true if pattern matches, but is zero-width;

doesn't advance character pointer

• (?! pattern) true if a pattern does not match

• How to match, at the beginning of a line, any single word that

doesn’t start with “Volcano”:

o/ˆ(?!Volcano)[A-Za-z]+/

Lookahead assertions

18

18

2/22/24

4

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Early NLP system that imitated a Rogerian psychotherapist

o Joseph Weizenbaum, 1966.

• Uses pattern matching to match, e.g.,:
o“I need X”

and translates them into, e.g.

o“What would it mean to you if you got X?

Simple Application: ELIZA

19

19

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Men are all alike.
IN WHAT WAY

They're always bugging us about something or other. CAN YOU THINK OF A
SPECIFIC EXAMPLE
Well, my boyfriend made me come here.
YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.

I AM SORRY TO HEAR YOU ARE DEPRESSED

Simple Application: ELIZA

20

20
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• s/.* I’M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/

• s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/

• s/.* all .*/IN WHAT WAY?/

• s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

How ELIZA works

21

21

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.3 - Words and Corpora

SIT330-770: Natural
Language Processing

22

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

22

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• "I do uh main- mainly business data processing"

oFragments, filled pauses

• "Seuss’s cat in the hat is different from other cats!"

oLemma: same stem, part of speech, rough word sense
ocat and cats = same lemma

oWordform: the full inflected surface form

ocat and cats = different wordforms

How many words in a sentence?

23

23
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

they lay back on the San Francisco grass and looked at the stars and their

• Type: an element of the vocabulary.

• Token: an instance of that type in running text.

• How many?

o 15 tokens (or 14)

o 13 types (or 12) (or 11?)

How many words in a sentence?

24

24

2/22/24

5

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

N = number of tokens

V = vocabulary = set of types, |V| is size of vocabulary

Heaps Law = Herdan's Law = 𝑉 = 𝑘𝑁!, where often 0.67 < 𝛽 <0.75

i.e., vocabulary size grows with > square root of the number of word tokens

How many words in a corpus?

25

Tokens = N Types = |V|

Switchboard phone conversations 2.4 million 20 thousand

Shakespeare 884,000 31 thousand

COCA 440 million 2 million

Google N-grams 1 trillion 13+ million

25

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Words don't appear out of nowhere!

A text is produced by

• a specific writer(s),

• at a specific time,

• in a specific variety,

• of a specific language,

• for a specific function.

Corpora

26

26
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Language: 7097 languages in the world

• Variety, like African American Language varieties.
o AAE Twitter posts might include forms like "iont" (I don't)

• Code switching, e.g., Spanish/English, Hindi/English:
 S/E: Por primera vez veo a @username actually being hateful! It was beautiful:)

 [For the first time I get to see @username actually being hateful! it was beautiful:)]

 H/E: dost tha or ra- hega ... dont wory ... but dherya rakhe

 [“he was and will remain a friend ... don’t worry ... but have faith”]

• Genre: newswire, fiction, scientific articles, Wikipedia
• Author Demographics: writer's age, gender, ethnicity, SES

Corpora vary along dimension like

27

27

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Gebru et al (2020), Bender and Friedman (2018)

Motivation:
• Why was the corpus collected?
• By whom?
• Who funded it?

Situation: In what situation was the text written?

Collection process: If it is a subsample how was it sampled? Was there consent? Pre-

processing?
• +Annotation process, language variety, demographics, etc.

Corpus datasheets

28

28

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.4 - Word tokenization

SIT330-770: Natural
Language Processing

29

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

29
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Every NLP task requires text normalization:

1. Tokenizing (segmenting) words

2. Normalizing word formats

3. Segmenting sentences

Text Normalization

30

30

2/22/24

6

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• A very simple way to tokenize
o For languages that use space characters between words

o Arabic, Cyrillic, Greek, Latin, etc., based writing systems

o Segment off a token between instances of spaces

• Unix tools for space-based tokenization
o The "tr" command

o Inspired by Ken Church's UNIX for Poets

o Given a text file, output the word tokens and their frequencies

Space-based tokenization

31

31

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Given a text file, output the word tokens and their frequencies
tr -sc ’A-Za-z’ ’\n’ < shakes.txt

| sort

 | uniq –c
1945 A

 72 AARON

 19 ABBESS

 5 ABBOT

Simple Tokenization in UNIX

32

Change all non-alpha to newlines

Sort in alphabetical order

Merge and count each type

32
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | head

THE

SONNETS

by

William

Shakespeare

From

fairest

creatures

We

...

The first step: tokenizing

33

33

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

tr -sc ’A-Za-z’ ’\n’ < shakes.txt | sort | head

A

A

A

A

A

A

A

A

A

...

The second step: sorting

34

34

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Merging upper and lower case
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c

• Sorting the counts
tr ‘A-Z’ ‘a-z’ < shakes.txt | tr –sc ‘A-Za-z’ ‘\n’ | sort | uniq –c | sort –n –r

More counting

35

23243 the
22225 i
18618 and
16339 to
15687 of
12780 a
12163 you
10839 my
10005 in
8954 d

What happened here?

35
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Can't just blindly remove punctuation:
o m.p.h., Ph.D., AT&T, cap’n

o prices ($45.55)

o dates (01/02/06)

o URLs (http://www.stanford.edu)

o hashtags (#nlproc)

o email addresses (someone@cs.colorado.edu)

• Clitic: a word that doesn't stand on its own
o "are" in we're, French "je" in j'ai, "le" in l'honneur

• When should multiword expressions (MWE) be words?
o New York, rock ’n’ roll

Issues in Tokenization

36

36

2/22/24

7

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Tokenization in NLTK

37

16 CHAPTER 2 • REGULAR EXPRESSIONS, TEXT NORMALIZATION, EDIT DISTANCE

Input: "The San Francisco-based restaurant," they said,

"doesn’t charge $10".

Output: " The San Francisco-based restaurant , " they said ,
" does n’t charge $ 10 " .

In practice, since tokenization needs to be run before any other language pro-
cessing, it needs to be very fast. The standard method for tokenization is therefore
to use deterministic algorithms based on regular expressions compiled into very ef-
ficient finite state automata. For example, Fig. 2.12 shows an example of a basic
regular expression that can be used to tokenize with the nltk.regexp tokenize
function of the Python-based Natural Language Toolkit (NLTK) (Bird et al. 2009;
http://www.nltk.org).

>>> text = ’That U.S.A. poster-print costs $12.40...’

>>> pattern = r’’’(?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

... | \w+(-\w+)* # words with optional internal hyphens

... | \$?\d+(\.\d+)?%? # currency and percentages, e.g. $12.40, 82%

... | \.\.\. # ellipsis

... | [][.,;"’?():-_‘] # these are separate tokens; includes], [

... ’’’

>>> nltk.regexp_tokenize(text, pattern)

[’That’, ’U.S.A.’, ’poster-print’, ’costs’, ’$12.40’, ’...’]

Figure 2.12 A Python trace of regular expression tokenization in the NLTK Python-based
natural language processing toolkit (Bird et al., 2009), commented for readability; the (?x)
verbose flag tells Python to strip comments and whitespace. Figure from Chapter 3 of Bird
et al. (2009).

Carefully designed deterministic algorithms can deal with the ambiguities that
arise, such as the fact that the apostrophe needs to be tokenized differently when used
as a genitive marker (as in the book’s cover), a quotative as in ‘The other class’, she
said, or in clitics like they’re.

Word tokenization is more complex in languages like written Chinese, Japanese,
and Thai, which do not use spaces to mark potential word-boundaries. In Chinese,
for example, words are composed of characters (called hanzi in Chinese). Eachhanzi
character generally represents a single unit of meaning (called a morpheme) and is
pronounceable as a single syllable. Words are about 2.4 characters long on average.
But deciding what counts as a word in Chinese is complex. For example, consider
the following sentence:
(2.4) ⁄�€e;≥[

“Yao Ming reaches the finals”
As Chen et al. (2017) point out, this could be treated as 3 words (‘Chinese Treebank’
segmentation):
(2.5) ⁄�

YaoMing
€e
reaches

;≥[
finals

or as 5 words (‘Peking University’ segmentation):
(2.6) ⁄

Yao
�
Ming

€e
reaches

;
overall

≥[
finals

Finally, it is possible in Chinese simply to ignore words altogether and use characters
as the basic elements, treating the sentence as a series of 7 characters:

37

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

>>> text = 'That U.S.A. poster-print costs $12.40...'

>>> pattern = r''' (?x) # set flag to allow verbose regexps

... ([A-Z]\.)+ # abbreviations, e.g. U.S.A.

Tokenization in NLTK

38

38
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Many languages (like Chinese, Japanese, Thai) don't use spaces to

separate words!

• How do we decide where the token boundaries should be?

Tokenization in languages without spaces

39

39

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Chinese words are composed of characters called "hanzi" (or

sometimes just "zi")

• Each one represents a meaning unit called a morpheme.

• Each word has on average 2.4 of them.

• But deciding what counts as a word is complex and not agreed

upon.

Word tokenization in Chinese

40

40

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

姚明进⼊总决赛 “Yao Ming reaches the finals”

• 3 words?
 姚明 进⼊ 总决赛
YaoMing reaches finals
• 5 words?
 姚 明 进⼊ 总 决赛
Yao Ming reaches overall finals
• 7 characters? (don't use words at all):
 姚 明 进 ⼊ 总 决 赛

Yao Ming enter enter overall decision game

How to do word tokenization in Chinese?

41

41
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• So, in Chinese it's common to just treat each character (zi) as a token.
o So, the segmentation step is very simple

• In other languages (like Thai and Japanese), more complex word

segmentation is required.
o The standard algorithms are neural sequence models trained by supervised machine

learning.

Word tokenization / segmentation

42

42

2/22/24

8

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.5 - Byte Pair Encoding

SIT330-770: Natural
Language Processing

43

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

43

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Instead of
o white-space segmentation

o single-character segmentation

• Use the data to tell us how to tokenize.

• Subword tokenization (because tokens can be parts of words as well as

whole words)

Another option for text tokenization

44

44
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Three common algorithms:

oByte-Pair Encoding (BPE) (Sennrich et al., 2016)

oUnigram language modeling tokenization (Kudo, 2018)
oWordPiece (Schuster and Nakajima, 2012)

• All have 2 parts:
o A token learner that takes a raw training corpus and induces a vocabulary (a set of

tokens).

o A token segmenter that takes a raw test sentence and tokenizes it according to that
vocabulary

Subword tokenization

45

45

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Let vocabulary be the set of all individual characters

 = {A, B, C, D,…, a, b, c, d….}

• Repeat:
o Choose the two symbols that are most frequently adjacent in the training corpus (say

'A', 'B')

o Add a new merged symbol 'AB' to the vocabulary

o Replace every adjacent 'A' 'B' in the corpus with 'AB'.

• Until k merges have been done.

Byte Pair Encoding (BPE) token learner

46

46

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

BPE token learner algorithm

47

2.4 • TEXT NORMALIZATION 19

function BYTE-PAIR ENCODING(strings C, number of merges k) returns vocab V

V all unique characters in C # initial set of tokens is characters
for i = 1 to k do # merge tokens til k times

tL, tR Most frequent pair of adjacent tokens in C
tNEW tL + tR # make new token by concatenating
V V + tNEW # update the vocabulary
Replace each occurrence of tL, tR in C with tNEW # and update the corpus

return V

Figure 2.13 The token learner part of the BPE algorithm for taking a corpus broken up
into individual characters or bytes, and learning a vocabulary by iteratively merging tokens.
Figure adapted from Bostrom and Durrett (2020).

from the training data, greedily, in the order we learned them. (Thus the frequencies
in the test data don’t play a role, just the frequencies in the training data). So first
we segment each test sentence word into characters. Then we apply the first rule:
replace every instance of e r in the test corpus with r, and then the second rule:
replace every instance of er in the test corpus with er , and so on. By the end,
if the test corpus contained the word n e w e r , it would be tokenized as a full
word. But a new (unknown) word like l o w e r would be merged into the two
tokens low er .

Of course in real algorithms BPE is run with many thousands of merges on a very
large input corpus. The result is that most words will be represented as full symbols,
and only the very rare words (and unknown words) will have to be represented by
their parts.

2.4.4 Word Normalization, Lemmatization and Stemming
Word normalization is the task of putting words/tokens in a standard format, choos-normalization
ing a single normal form for words with multiple forms like USA and US or uh-huh
and uhhuh. This standardization may be valuable, despite the spelling information
that is lost in the normalization process. For information retrieval or information
extraction about the US, we might want to see information from documents whether
they mention the US or the USA.

Case folding is another kind of normalization. Mapping everything to lowercase folding

case means that Woodchuck and woodchuck are represented identically, which is
very helpful for generalization in many tasks, such as information retrieval or speech
recognition. For sentiment analysis and other text classification tasks, information
extraction, and machine translation, by contrast, case can be quite helpful and case
folding is generally not done. This is because maintaining the difference between,
for example, US the country and us the pronoun can outweigh the advantage in
generalization that case folding would have provided for other words.

For many natural language processing situations we also want two morpholog-
ically different forms of a word to behave similarly. For example in web search,
someone may type the string woodchucks but a useful system might want to also
return pages that mention woodchuck with no s. This is especially common in mor-
phologically complex languages like Russian, where for example the word Moscow
has different endings in the phrases Moscow, of Moscow, to Moscow, and so on.

Lemmatization is the task of determining that two words have the same root,
despite their surface differences. The words am, are, and is have the shared lemma

47
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Most subword algorithms are run inside space-separated tokens.

• So we commonly first add a special end-of-word symbol '__' before space in

training corpus

• Next, separate into letters.

Byte Pair Encoding (BPE) Addendum

48

48

2/22/24

9

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Original (very fascinating🙄) corpus:

• low low low low low lowest lowest newer newer newer newer newer

newer wider wider wider new new

• Add end-of-word tokens, resulting in this vocabulary:

BPE token learner

49

Corpus
5 l o w _
2 l o w e s t _
6 n e w e r _
3 w i d e r _
2 n e w _

Vocabulary
_, d, e, i, l, n, o, r, s, t, w

49

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

BPE

50

Corpus
5 l o w _
2 l o w e s t _
6 n e w e r _
3 w i d e r _
2 n e w _

Vocabulary
_, d, e, i, l, n, o, r, s, t, w

Corpus
5 l o w _
2 l o w e s t _
6 n e w er _
3 w i d er _
2 n e w _

Vocabulary
_, d, e, i, l, n, o, r, s, t, w, er

Merge [e r] to [er]

50
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

51

Corpus
5 l o w _
2 l o w e s t _
6 n e w er _
3 w i d er _
2 n e w _

Vocabulary
_, d, e, i, l, n, o, r, s, t, w, er

Corpus
5 l o w _
2 l o w e s t _
6 n e w er_
3 w i d er_
2 n e w _

Vocabulary
, d, e, i, l, n, o, r, s, t, w, er, er

Merge [er _] to [er_]

51

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

BPE

52

Corpus
5 l o w _
2 l o w e s t _
6 n e w er_
3 w i d er_
2 n e w _

Vocabulary
, d, e, i, l, n, o, r, s, t, w, er, er

Corpus
5 l o w _
2 l o w e s t _
6 ne w er_
3 w i d er_
2 ne w _

Vocabulary
, d, e, i, l, n, o, r, s, t, w, er, er, ne

Merge [n e] to [ne]

52

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The next merges are:

BPE

53

Merge Current Vocabulary

(ne, w) _, d, e, i, 1, n, o, r, s, t, w, er, er_, ne, new

(l, o) _, d, e, i, 1, n, o, r, s, t, w, er, er_, ne, new, lo

(lo, w) _, d, e, i, 1, n, o, r, s, t, w, er, er_, ne, new, lo, low

(new, er_) _, d, e, i, 1, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer_

(low, _) _, d, e, i, 1, n, o, r, s, t, w, er, er_, ne, new, lo, low, newer_, low_

53
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

On the test data, run each merge learned from the training data:

o Greedily

o In the order we learned them

o (test frequencies don't play a role)

So: merge every [e r] to [er], then merge [er _] to [er_], etc.

• Result:

o Test set "n e w e r _" would be tokenized as a full word

o Test set "l o w e r _" would be two tokens: "low er_"

BPE token segmenter algorithm

54

54

2/22/24

10

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Usually include frequent words and frequent subwords
o Which are often morphemes like -est or –er

• A morpheme is the smallest meaning-bearing unit of a language

o unlikeliest has 3 morphemes un-, likely, and -est

Properties of BPE tokens

55

55

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.6 - Word Normalization and
other issues

SIT330-770: Natural
Language Processing

56

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

56
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Putting words/tokens in a standard format
oU.S.A. or USA

ouhhuh or uh-huh

oFed or fed

oam, is, be, are

Word Normalization

57

57

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Applications like IR: reduce all letters to lower case
o Since users tend to use lower case

o Possible exception: upper case in mid-sentence?

o e.g., General Motors

o Fed vs. fed

o SAIL vs. sail

• For sentiment analysis, MT, Information extraction
o Case is helpful (US versus us is important)

Case folding

58

58

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Represent all words as their lemma, their shared root
 = dictionary headword form:

o am, are, is ® be

o car, cars, car's, cars' ® car

o Spanish quiero (‘I want’), quieres (‘you want’)

® querer ‘want'

o He is reading detective stories

® He be read detective story

Lemmatization

59

59
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Morphemes:
o The small meaningful units that make up words

o Stems: The core meaning-bearing units

o Affixes: Parts that adhere to stems, often with grammatical functions

• Morphological Parsers:
o Parse cats into two morphemes cat and s

o Parse Spanish amaren (‘if in the future they would love’) into morpheme amar ‘to love’,

and the morphological features 3PL and future subjunctive.

Lemmatization is done by Morphological Parsing

60

60

2/22/24

11

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Reduce terms to stems, chopping off affixes crudely

Stemming

61

This was not the map we found
in Billy Bones’s chest, but an
accurate copy, complete in all
things-names and heights and
soundings-with the single
exception of the red crosses
and the written notes.

Thi wa not the map we found
in Billi Bone s chest but an
accur copi complet in all
thing name and height and
sound with the singl except
of the red cross and the
written note.

61

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Based on a series of rewrite rules run in series
o A cascade, in which output of each pass fed to next pass

• Some sample rules:

Porter Stemmer

62

ATIONAL ⟶ ATE (e.g., ATIONAL⟶ATE)
ING ⟶ 𝜖 if stem contains vowel (e.g., motoring ⟶ motor)

SSES ⟶ SS (e.g., grasses ⟶ grass)

62
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• e.g., the Turkish word:

• Uygarlastiramadiklarimizdanmissinizcasina

• `(behaving) as if you are among those whom we could not civilize’

• Uygar `civilized’ + las `become’
+ tir `cause’ + ama `not able’

+ dik `past’ + lar ‘plural’

+ imiz ‘p1pl’ + dan ‘abl’

+ mis ‘past’ + siniz ‘2pl’ + casina ‘as if’

Dealing with complex morphology is necessary for many
languages

63

63

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• !, ? mostly unambiguous but period “.” is very ambiguous
o Sentence boundary
o Abbreviations like Inc. or Dr.
o Numbers like .02% or 4.3

• Common algorithm: Tokenize first: use rules or ML to classify a period as either (a)

part of the word or (b) a sentence-boundary.
o An abbreviation dictionary can help

• Sentence segmentation can then often be done by rules based on this

tokenization.

Sentence Segmentation

64

64

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.7 - Definition of Minimum Edit
Distance

SIT770: Natural Language
Processing

65

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

65
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Spell correction
o The user typed “graffe”

Which is closest?

o graf

o graft

o grail

o giraffe

How similar are two strings?

66

• Computational Biology
o Align two sequences of nucleotides

o Resulting alignment:

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---

TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

• Also for Machine Translation, Information Extraction, Speech Recognition

66

2/22/24

12

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• The minimum edit distance between two strings

• Is the minimum number of editing operations

o Insertion

o Deletion

o Substitution

• Needed to transform one into the other

Edit Distance

67

67

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Two strings and their alignment:

Minimum Edit Distance

68

68
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• If each operation has cost of 1
o Distance between these is 5

• If substitutions cost 2 (Levenshtein)
o Distance between them is 8

Minimum Edit Distance

69

69

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Given a sequence of bases

• An alignment:

• Given two sequences, align each letter to a letter or gap

Alignment in Computational Biology

70

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

70

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Evaluating Machine Translation and speech recognition
R Spokesman confirms senior government adviser was appointed

H Spokesman said the senior adviser was appointed

 S I D I

• Named Entity Extraction and Entity Coreference
o IBM Inc. announced today

o IBM profits

o Stanford Professor Jennifer Eberhardt announced yesterday

o for Professor Eberhardt…

Other uses of Edit Distance in NLP

71

71
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Searching for a path (sequence of edits) from the start string to the final

string:

o Initial state: the word we’re transforming

o Operators: insert, delete, substitute

o Goal state: the word we’re trying to get to

o Path cost: what we want to minimize: the number of edits

How to find the Min Edit Distance?

72

72

2/22/24

13

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• But the space of all edit sequences is huge!
o We can’t afford to navigate naïvely

o Lots of distinct paths wind up at the same state.

oWe don’t have to keep track of all of them

o Just the shortest path to each of those revisted states.

Minimum Edit as Search

73

73

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.8 - Computing Minimum Edit
Distance

SIT770: Natural Language
Processing

74

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

74
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• For two strings
o X of length n

o Y of length m

• We define D(i,j)

o the edit distance between X[1..i] and Y[1..j]

o i.e., the first i characters of X and the first j characters of Y

o The edit distance between X and Y is thus D(n,m)

Defining Min Edit Distance

75

75

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Dynamic programming: A tabular computation of D(n,m)

• Solving problems by combining solutions to subproblems.

• Bottom-up

o We compute D(i,j) for small i,j

o And compute larger D(i,j) based on previously computed smaller values

o i.e., compute D(i,j) for all i (0 < i < n) and j (0 < j < m)

Dynamic Programming for Minimum Edit Distance

76

76

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Initialization
D(i,0) = i

D(0,j) = j

Recurrence Relation:
For each i = 1…M
 For each j = 1…N

 D(i-1,j) + 1

 D(i,j)= min D(i,j-1) + 1

 D(i-1,j-1) + 2; if X(i) ≠ Y(j)

 0; if X(i) = Y(j)
Termination:

D(N,M) is distance

Defining Min Edit Distance (Levenshtein)

77

77
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Edit Distance Table

78

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

78

2/22/24

14

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Edit Distance Table

79

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

79

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Edit Distance Table

80

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

80
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Edit Distance Table

81

N 9 8 9 10 11 12 11 10 9 8

O 8 7 8 9 10 11 10 9 8 9

I 7 6 7 8 9 10 9 8 9 10

T 6 5 6 7 8 9 8 9 10 11

N 5 4 5 6 7 8 9 10 11 10

E 4 3 4 5 6 7 8 9 10 9

T 3 4 5 6 7 8 7 8 9 8

N 2 3 4 5 6 7 8 7 8 7

I 1 2 3 4 5 6 7 6 7 8

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

81

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.9 - Backtrace for Computing
Alignments

SIT770: Natural Language
Processing

82

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

82

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Edit distance isn’t sufficient
o We often need to align each character of the two strings to each other

• We do this by keeping a “backtrace”

• Every time we enter a cell, remember where we came from

• When we reach the end,

o Trace back the path from the upper right corner to read off the alignment

Computing alignments

83

83
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Edit Distance

84

N 9

O 8

I 7

T 6

N 5

E 4

T 3

N 2

I 1

0 1 2 3 4 5 6 7 8 9

E X E C U T I O N

84

2/22/24

15

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

MinEdit with Backtrace

85

85

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Base conditions: Termination:

D(i,0) = i D(0,j) = j D(N,M) is distance

Recurrence Relation:

For each i = 1…M
 For each j = 1…N

 D(i-1,j) + 1

 D(i,j)= min D(i,j-1) + 1

 D(i-1,j-1) + 2; if X(i) ≠ Y(j)

 0; if X(i) = Y(j)

 LEFT

 ptr(i,j)= DOWN

 DIAG

Adding Backtrace to Minimum Edit Distance

86

insertion

deletion

substitution

insertion

deletion

substitution

86
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Distance Matrix

87

Every non-decreasing path

from (0,0) to (M, N)

corresponds to

an alignment

of the two sequences
y0 ……………………………… yM

x0
 …

…
…

…
…

…
…

…
 x
N

An optimal alignment is composed of optimal
subalignments

87

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Two strings and their alignment:

Result of Backtrace

88

88

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Time:
o O(nm)

• Space:

oO(nm)

• Backtrace
oO(n+m)

Performance

89

89
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.10 - Weighted Minimum Edit
Distance

SIT770: Natural Language
Processing

90

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

90

2/22/24

16

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Why would we add weights to the computation?
o Spell Correction: some letters are more likely to be mistyped than others

o Biology: certain kinds of deletions or insertions are more likely than others

Weighted Edit Distance

91

91

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Confusion matrix for spelling errors

92

92
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

93

93

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Initialization:
D(0,0) = 0
D(i,0) = D(i-1,0) + del[x(i)]; 1 < i ≤ N
D(0,j) = D(0,j-1) + ins[y(j)]; 1 < j ≤ M

• Recurrence Relation:
 D(i-1,j) + del[x(i)]
D(i,j)= min D(i,j-1) + ins[y(j)]
 D(i-1,j-1) + sub[x(i),y(j)]

• Termination:
D(N,M) is distance

Weighted Min Edit Distance

94

94

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

…The 1950s were not good years for mathematical research. [the] Secretary of
Defense …had a pathological fear and hatred of the word, research…
 I decided therefore to use the word, “programming”.
 I wanted to get across the idea that this was dynamic, this was multistage… I
thought, let’s … take a word that has an absolutely precise meaning, namely
dynamic… it’s impossible to use the word, dynamic, in a pejorative sense. Try
thinking of some combination that will possibly give it a pejorative meaning. It’s
impossible.
Thus, I thought dynamic programming was a good name. It was something not
even a Congressman could object to.”
 Richard Bellman, “Eye of the Hurricane: an autobiography” 1984.

Where did the name, dynamic programming, come from?

95

95
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Week 3.11 - Minimum Edit Distance in
Computational Biology

SIT770: Natural Language
Processing

96

Dr. Mohamed Reda Bouadjenek

School of Information Technology,
Faculty of Sci Eng & Built Env

96

2/22/24

17

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Sequence Alignment

97

-AGGCTATCACCTGACCTCCAGGCCGA--TGCCC---
TAG-CTATCAC--GACCGC--GGTCGATTTGCCCGAC

AGGCTATCACCTGACCTCCAGGCCGATGCCC
TAGCTATCACGACCGCGGTCGATTTGCCCGAC

97

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Comparing genes or regions from different species
o to find important regions

o determine function

o uncover evolutionary forces

• Assembling fragments to sequence DNA

• Compare individuals to looking for mutations

Why sequence alignment?

98

98
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• In Natural Language Processing

oWe generally talk about distance (minimized)

oAnd weights

• In Computational Biology

oWe generally talk about similarity (maximized)
oAnd scores

Alignments in two fields

99

99

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Initialization:
D(i,0) = -i * d

D(0,j) = -j * d

• Recurrence Relation:
 D(i-1,j) - d

D(i,j)= max D(i,j-1) - d

 D(i-1,j-1) + s[x(i),y(j)]

• Termination:
D(N,M) is distance

The Needleman-Wunsch Algorithm

100

100

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Needleman-Wunsch Matrix

101

x1 ……………………………… xM

y
1 …

…
…

…
…

…
…

…
 y
N

(Note that the origin is at the
upper left.)

101
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

• Maybe it is OK to have an unlimited # of gaps in the beginning and end:

• If so, we don’t want to penalize gaps at the ends

A variant of the basic algorithm:

102

----------CTATCACCTGACCTCCAGGCCGATGCCCCTTCCGGC
GCGAGTTCATCTATCAC--GACCGC--GGTCG--------------

102

2/22/24

18

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Different types of overlaps

103

Example:
2 overlapping“reads” from a
sequencing project

Example:
Search for a m ouse gene
within a human chromosome

103

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

The Overlap Detection variant

104

Changes:

1. Initialization

For all i, j,
 F(i, 0) = 0
 F(0, j) = 0

2. Termination

 maxi F(i, N)
FOPT = max
 maxj F(M, j)

x1 ……………………………… xM

y1
 …

…
…

…
…

…
…

…
 y
N

104
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Given two strings x = x1……xM,
 y = y1……yN

Find substrings x’, y’ whose similarity
 (optimal global alignment value)
 is maximum

 x = aaaacccccggggtta
 y = ttcccgggaaccaacc

The Local Alignment Problem

105

105

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Idea: Ignore badly aligning regions

Modifications to Needleman-Wunsch:

Initialization: F(0, j) = 0

 F(i, 0) = 0

 0

Iteration: F(i, j) = max F(i – 1, j) – d

 F(i, j – 1) – d

 F(i – 1, j – 1) + s(xi, yj)

The Smith-Waterman algorithm

106

106

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

Termination:
1. If we want the best local alignment…

 FOPT = maxi,j F(i, j)

 Find FOPT and trace back

2. If we want all local alignments scoring > t

?? For all i, j find F(i, j) > t, and trace back?

Complicated by overlapping local alignments

The Smith-Waterman algorithm

107

107
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

X = ATCAT

Y = ATTATC

Let:

 m = 1 (1 point for match)

 d = 1 (-1 point for del/ins/sub)

Local alignment example

108

A T T A T C

0 0 0 0 0 0 0

A 0

T 0

C 0

A 0

T 0

108

2/22/24

19

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

X = ATCAT

Y = ATTATC

Local alignment example

109

A T T A T C

0 0 0 0 0 0 0

A 0 1 0 0 1 0 0

T 0 0 2 1 0 2 0

C 0 0 1 1 0 1 3

A 0 1 0 0 2 1 2

T 0 0 2 0 1 3 2

109

D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

X = ATCAT

Y = ATTATC

Local alignment example

110

A T T A T C

0 0 0 0 0 0 0

A 0 1 0 0 1 0 0

T 0 0 2 1 0 2 0

C 0 0 1 1 0 1 3

A 0 1 0 0 2 1 2

T 0 0 2 0 1 3 2

110
D e a k in U n iv e r s it y C R I C O S P r o v id e r C o d e : 0 0 1 1 3 B

X = ATCAT

Y = ATTATC

Local alignment example

111

A T T A T C

0 0 0 0 0 0 0

A 0 1 0 0 1 0 0

T 0 0 2 1 0 2 0

C 0 0 1 1 0 1 3

A 0 1 0 0 2 1 2

T 0 0 2 0 1 3 2

111

